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In an earlier paper, the author jointly with S. Suryawanshi pro-
posed statistical analysis of shape through triangulation of land-
marks on objects. It was observed that the angles of the triangles
are invariant to scaling, location, and rotation of objects. No
distinction was made between an object and its reflection. The
present paper provides the methodology of shape discrimination
when reflection is also taken into account and makes suggestions
for modifications to be made when some of the landmarks are
collinear.
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Rao and Suryawanshi, abbreviated as RS in this sequel,
developed statistical methodology for analysis of shape of

objects in ref. 1 through triangulation of landmarks (TLM) and
applied it in a study of sexual dimorphism in hominids. It was
observed that the angles of the triangles formed by three
landmarks are invariant to scaling, location, and reflection of
objects. With k landmarks, there are k(k21)(k22)y6 triangles
and considering two angles of each triangle, the database
consists of k(k21)(k22)y3 measurements (angles) on each
object. It was suggested that a subset of (k22) triangles with
2(k22) angles, which uniquely define the configuration of
landmarks of an object, can be used for statistical analysis. But
a description of shape differences between objects may need a
comparison of all possible triangles, as demonstrated in ref. 1.
The present note is intended to clarify some of the issues
involved and demonstrate how the study of shape, including
reflections through TLM, provides a satisfactory approach to
problems of shape comparison, recognition, and discrimination.

What Is Shape Analysis?
We have a set of objects (or their images), each of which is
specified by the configuration of some recognizable landmarks
on it and identified as a member of a particular class (population)
out of a given set of possible alternatives. An object can then be
represented by the elements of a matrix of order k 3 p, where
k is the number of landmarks, p is the dimensions (1, 2, or 3 in
practice) of the object, and each row gives the coordinates of a
landmark when the object is referred to a coordinate system. The
coordinates matrix X is not comparable over the objects if they
differ in size (S), location (L), and orientation changeable by
rotation (R), which will be referred to as SLR. The primary task
in shape analysis is to transform X into a vector y 5 f(X) in such
a way that y is invariant to SLR, and the configuration X of
landmarks (apart from SLR) can be recovered from y. The
elements of y in such a case are called the shape measurements
of the object. Two objects are said to be of the same shape if one
can be brought into coincidence with the other by suitable SLR.

There will be several choices of y for given x. Some examples
are Kendall’s and Bookstein’s shape coordinates, Euclidean
distances matrix (EDM) of Lele (2) and Lele and Richtsmeier
(3), logarithm (log) EDM of RS (4), and TLM of RS (1). A
description of some of these coordinates and the statistical
analyses based on them can be found in books by Dryden and
Mardia (5) and Small (6).

For purposes of statistical analysis, any choice of shape
measurements will do, provided their probability distribution
can be modeled accurately. In such a case, appropriate statistical
methods may be used for testing differences between popula-
tions and classification of new objects.

In ref. 4, log distances between landmarks and in ref. 1, all
possible angles by TLM are suggested as shape measurements.
The mean shape of the objects is defined as the set of all
arithmetic means (AMs) of different shape measurements. In
such a case, the mean shape of a subset of landmarks is simply
the set of all AMs associated with these landmarks. In the case
of Kendall and Bookstein coordinates, the mean shape of a
subset of landmarks depends on all the landmarks, which may
not be a desirable feature. The shape measurements used in refs.
1 and 4 in terms of angles and those in ref. 2 in terms of distances
between landmarks are direct measurements on landmarks, and
differences between individuals and populations in such mea-
surements are easy to interpret. A typical illustration is the
explanation of difference in mean shapes of Pan and Pongo
skulls in terms of the angles of a triangle formed by three
landmarks, as discussed in ref. 1.

In the discussion of the rest of the paper, we keep in view the
following aspects of shape analysis.

(i) Are the distributions of shape measurements (i.e., SLR
invariant) the same in all populations under study?

(ii) How do we identify an individual with given shape
measurements as belonging to a particular population among
several possible alternatives? This is the problem of discrimina-
tion.

(iii) How do we describe differences in shape between indi-
viduals and between populations in terms of easily recognizable
measurements, such as angles of triangles formed by triads of
landmarks and ratios of distances between landmarks? Such a
description may be useful in an in-depth investigation of differ-
ences between individuals.

Objects Specified by Three Landmarks
First we consider objects (or images) specified by three land-
marks that may be designated as 1, 2, and 3. We adopt the
convention of viewing the object with the edge (1, 2) in the west
(1)–east (2) direction. In such a case, the third vertex, 3, can be
to the north or to the south of the edge (1, 2), as shown in Fig.
1 A and B. We may call the configuration of landmarks in Fig.
1A L triangle (where 1, 2, and 3 are in a counterclockwise
direction) and that in Fig. 1B R triangle (where 1, 2, and 3 are
in a clockwise direction). Thus we make a distinction between an
image and its reflection. Such a distinction may provide a good
discriminant in pattern recognition (in diagnosis of diseases,
etc.).

Abbreviations: log, logarithm; EDM, Euclidean distances matrix; TLM, triangulation of
landmarks; SLR, size, location, and orientation changeable by rotation; RS, Rao and
Suryawanshi.
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We follow the convention of recording the angles at vertices
1 and 2 as shown in Fig. 1 A and B. In the case of L triangles, u
and c are in the range of 0 to 180° (or 0 to p radians) with c $
u, and in the case of R triangles, u and c are in the range of 180
to 360° (or p to 2p radians) with u $ c. Such measurements
provide a clear distinction between L and R triangles.

If the population consists of only one kind of triangle, or if
reflection is ignored, we may work with the interior angles at
vertices 1 and 2, as shown in Fig. 2, which was the convention
followed by RS (1).

The angular measurements, as defined in Figs. 1 A and B and
Fig. 2, are SLR invariant and constitute ideal descriptors of
shape. A population of triangles specified by three landmarks
may be described as a mixture in a given proportion of the L type
with a probability distribution of (u, c), where each angle varies
in the range (0–180°), and of the R type with a probability
distribution of (u, c), where each angle varies in the range
(180–360°). When comparing two populations for shape differ-
ences, it will be more illuminating to test for differences in the
proportions of the mixture of L and R triangles and in the actual
distributions of the angles in the L and R types. In many practical
situations, the triangles are likely to be of one type, and the more
interesting cases are when both types of triangles exist in a
population. However, in any case, because the ranges of (u, c)
are different for the L and R triangles, the joint distribution of
(u, c) is uniquely defined.

It has been pointed out by Dryden and Mardia (4) that when
three landmarks are collinear, two of the angles are zero
whatever the positions of the landmarks on a line, and the
angular approach fails to discriminate between shapes in terms
of the positions of the landmarks.

Collinearity of landmarks in an observed specimen raises a
number of questions. It may be an isolated pathological case, in
which case it needs careful investigation. It may be a natural
characteristic of the objects of a populations that three land-
marks are collinear (absolutely or nearly because of minor
perturbations). In such a case, the problem becomes one dimen-
sional, and we need only consider a single measurement such as
the distance of landmark 3 from 1 in the positive or negative
direction, after scaling the length of the edge (1, 2) to unity. Or
it may be that collinearity of landmarks is one of the possible
configurations in a population of triangles. If such objects have
a finite probability, then we may have to consider the population
as a mixture of three types of objects, L and R triangles and
straight lines. If necessary, collinearity of three landmarks may
be viewed as a limiting case of a triangle with angles «,l« and

180-«-l«, where « is small and l determines the position of one
of the landmarks with respect to the others on a line.

Statistical Analysis of Triangles
Let us consider populations with only one type of triangle. In
such a case, the shape measurements may be chosen as the
interior angles of a triangle, and the mean shape can be defined
as the triangle whose vertex angles are the mean values of the
corresponding angles of individual triangles. No anomaly arises
so long as we are working with one type of triangle. Variation in
shape can be defined by the variance–covariance matrix of any
two interior angles. Differences in shape distributions between
populations may be explained in terms of differences in mean
shapes of triangles and possibly in their variance–covariance
matrices. Such a simple interpretation of differences in shape of
three landmarks, which will be of some practical value, may not
be available when Kendall or Bookstein coordinates are used.

How do we test for difference in mean shape on the basis of
samples of angular data from each of the populations under
comparison? We can derive appropriate tests if the stochastic
model for the distribution of angles is known. In ref. 1, Hotell-
ing’s T2 and Mahalanobis distance were used to test and explain
differences between populations of one type of triangle consid-
ering two interior angles u1,u2 as samples from a bivariate normal
distribution. This was justified because a prior test showed no
significant departure from bivariate normality. If the distribution
is found to be nonnormal, there are several alternatives. If the
sample sizes are large, Hotelling’s T2 can be used approximately
as a x2. Adjustments can also be made in the T2 statistic if the
variance–covariance matrix of u1,u2 is different in different
populations. Another possibility in large samples is the use of
bootstrap methodology as suggested by Lele and Cole (7). If
exact tests under nonnormality are required, one could use
permutation and other nonparametric tests. Other possibilities
are transforming the angles to induce normality, such as taking
logs as mentioned in ref. 1.

Suppose that each of the populations to be compared is a
mixture of two types of triangles. Then we may compare the
distributions of L triangles and R triangles separately by using the
method developed for comparing one type of triangle in ref. 1
and further elaborated in this paper. We also have the oppor-
tunity to test for differences in the proportion of the mixture of
L and R triangles in different populations. When a population
consists of a mixture of L and R triangles, the concept of a mean
triangle may not be meaningful.

A single test of difference in the overall distribution of two angles
(L and R triangles put together), if necessary, can also be carried out
on standard lines by using Kolmogorov- and Smirnov-type tests.

For a graphical representation of the objects, the interior
angles of triangles of the L type can be plotted as aerial
coordinates in the upper equilateral triangle and of the R type
in the lower equilateral triangle. If s is the side of the equilateral
triangle, then the triangle with angles u1,u2,u3 (u1 1 u2 1 u3 5
180°) can be represented by the point (x, y), where x, the distance
from 1 along the side 1, 2, and y, the distance perpendicular to
1, 2 are given by

x 5 s
u1

180
1 ~s cos 60!

u3

180
,

y 5 ~s sin 60!
u3

180
,

The shapes of the triangles at different points are shown in Fig.
3. The degenerate cases when the vertices are collinear can be
represented on the dotted line depending on the position of
vertex 3 in relation to vertices 1 and 2, as shown in Fig. 3.

Fig. 1. (A) L triangle 1; (B) R triangle.

Fig. 2. Triangle specified by two interior angles.
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More Than Three Landmarks
When there are more than three landmarks, say k, the possible
number of triangles is k(k21)(k23)y6, but the configuration of
landmarks can be fixed by choosing (k22) triangles. Considering
two angles of each triangle, we have a total of 2(k22) angles as
shape measurements. The choice of (k22) triangles can be made
in a number of ways. We have addressed the problem of the
choice of triangulation in ref. 1. It was suggested that, for
purposes of testing differences in shape and for discrimination
between populations, any particular triangulation will do, pro-
vided we can find an appropriate stochastic model for the
distribution of 2(k22) angles. This may not be known, and in
practice nonparametric or large sample methods may have to be
used. It is recommended that a few possible triangulations may
be chosen and statistical analysis done on each to test for
consistency. It is suggested that Delaunay triangulation may have

some advantages, because they provide triangles that are close to
the equilateral.

If the problem is one of classification of individuals by shape,
neural networks or other nonparametric procedures may be
used to choose a set of angles, with appropriate transforma-
tions if necessary, which minimize the percentage of errors in
classification.

If differences in shape between populations are established by
appropriate tests, it may be necessary to explain the nature of
differences by considering each possible triangle, as demon-
strated in ref. 1. Some precautions are needed in triangulation in
view of the possibilities that some landmarks may be collinear
and some triangles may not be of the same type (L or R) for all
sample objects.

The collinearity problem can be handled easily provided not
all landmarks are collinear. Fig. 4 shows the case of four
landmarks of which three landmarks, 2, 3, and 4, are collinear or
nearly collinear.

We can choose two triangles and angles u1, u2 and u4, as shown
in Fig. 4. We thus have one angle less to deal with in our analysis.
Fig. 5 shows the case of 6 landmarks of which 2, 3, and 4 are
collinear. In such a case, the choice of 4 5 (622) triangles and
7 angles (one less because of collinearity), as marked in Fig. 5,
may be chosen.

Although it is important to distinguish between L and R
triangles, when the configuration of any set of three landmarks
is considered, it would be simpler for purposes of global statis-
tical analysis, when there are more than three landmarks, to
choose a TLM where each triangle is of only one type in all the
samples, which is usually possible in practical situations. In the
extreme case, it may be possible to choose two landmarks such
that all the other landmarks are on one side of the (base) line
joining the two landmarks. Then the triangles chosen as indi-
cated in Fig. 6 are all of one type.

The statistical analysis with such choice of triangles can be
carried out as indicated in ref. 1.

Conclusions
The angles of triangles are natural SLR invariant measurements
that can be made directly on an object. Differences in angular

Fig. 3. Different shapes of triangles at different points of aerial coordinates
are indicated.

Fig. 4. Four landmarks, three of them (2, 3, 4) nearly collinear.

Fig. 5. TLM of which three (1, 3, 4) are collinear.

Fig. 6. All triangles have the same base line (1, 2).
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measurements between objects provide simple descriptors of
shape differences and may be of value in practical applications.
The problem of distinguishing between objects that are reflec-
tions of each other can be handled easily through the study of
angles as described in Objects Specified by Three Landmarks
(above). The distribution of the SLR invariant coordinates of
Kendall and Bookstein, and the distances between landmarks of
Lele can be examined through the distribution of angles, because
the former are functions of the latter. The EDM is invariant to
reflection also. We donote such a situation by SLRr invariant,
where r stands for reflection.

The choice of a stochastic model for any set of SLR invariant
measurements poses a difficult problem. Consider for instance the
choice of a particular stochastic model for Bookstein’s coordinates

by using the line joining two chosen landmarks as the base line for
registering each sample objects. The same model cannot hold if a
different base line is chosen. So there is no way of making an a priori
recommendation for the choice of the stochastic model without
reference to the chosen base line. This problem does not arise if one
considers all distances in EDM or all possible angles and finds a
suitable stochastic model. Of course, if a subset of these measure-
ments is used, the same difficulty arises. The same stochastic model
may not hold for all subsets. This is why a preliminary examination
of data for model selection is recommended for any chosen set of
SLR invariant measurements before deciding on appropriate sta-
tistical methodology for analysis.
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